
Sequence Containers Indexing

Base Types

Python 3 Cheat Sheet©2012-2015 - Laurent Pointal
License Creative Commons Attribution 4

Latest version on :
https://perso.limsi.fr/pointal/python:memento

0783 -192int

9.23 -1.7e-60.0float
True Falsebool
"One\nTwo"

'I\'m'

str
"""X\tY\tZ
1\t2\t3"""

×10-6

escaped tab

escaped new line
Multiline string:

Container Types
list [1,5,9] ["x",11,8.9] ["mot"] []

tuple (1,5,9) 11,"y",7.4 ("mot",) ()

dict
{1:"one",3:"three",2:"two",3.14:"π"}

{"key":"value"}

set

{}

{1,9,3,0}

◾ ordered sequences, fast index access, repeatable values

set()

◾ key containers, no a priori order, fast key access, each key is unique

{"key1","key2"}

Non modifiable values (immutables)

Variables assignment

x=1.2+8+sin(y)

y,z,r=9.2,-7.6,0

a…zA…Z_ followed by a…zA…Z_0…9
◽ diacritics allowed but should be avoided
◽ language keywords forbidden
◽ lower/UPPER case discrimination

☝ expression with only comas →tuple

dictionary

collection

integer, float, boolean, string, bytes

Identifiers

☺ a toto x7 y_max BigOne
☹ 8y and for

x+=3
x-=2

increment ⇔ x=x+3
decrement ⇔ x=x-2

Conversions

for lists, tuples, strings, bytes…

int("15") → 15
int("3f",16) → 63 can specify integer number base in 2nd parameter
int(15.56) → 15 truncate decimal part
float("-11.24e8") → -1124000000.0
round(15.56,1)→ 15.6 rounding to 1 decimal (0 decimal → integer number)
bool(x) False for null x, empty container x , None or False x ; True for other x
str(x)→ "…" representation string of x for display (cf. formatting on the back)
chr(64)→'@' ord('@')→64 code ↔ char
repr(x)→ "…" literal representation string of x
bytes([72,9,64]) → b'H\t@'
list("abc") → ['a','b','c']
dict([(3,"three"),(1,"one")]) → {1:'one',3:'three'}
set(["one","two"]) → {'one','two'}
separator str and sequence of str → assembled str

':'.join(['toto','12','pswd']) → 'toto:12:pswd'
str splitted on whitespaces → list of str

"words with spaces".split() → ['words','with','spaces']
str splitted on separator str → list of str

"1,4,8,2".split(",") → ['1','4','8','2']
sequence of one type → list of another type (via list comprehension)

[int(x) for x in ('1','29','-3')] → [1,29,-3]

type(expression)

lst=[10, 20, 30, 40, 50]
lst[1]→20
lst[-2]→40

0 1 2 3 4
-5 -4 -3 -1-2 Individual access to items via lst[index]

positive index
negative index

0 1 2 3 54

-5 -4 -3 -1-2negative slice
positive slice

Access to sub-sequences via lst[start slice:end slice:step]

len(lst)→5

lst[1:3]→[20,30]

lst[::2]→[10,30,50]
lst[-3:-1]→[30,40]

lst[:3]→[10,20,30]lst[:-1]→[10,20,30,40]
lst[3:]→[40,50]lst[1:-1]→[20,30,40]

lst[:]→[10,20,30,40,50]
Missing slice indication → from start / up to end.
On mutable sequences (list), remove with del lst[3:5] and modify with assignment lst[1:4]=[15,25]

Conditional Statement

if age<=18:
 state="Kid"
elif age>65:
 state="Retired"
else:
 state="Active"

Boolean Logic Statements Blocks

parent statement:
 statement block 1…
 ⁝
 parent statement:
 statement block2…
 ⁝

next statement after block 1

in
de

nt
at

io
n

!

Comparisons : < > <= >= == !=≠=≥≤
a and b

a or b

not a

logical and

logical or

logical not

one or other
or both

both simulta-
-neously

if logical condition:
 statements block

statement block executed only
if a condition is true

Can go with several elif, elif... and only one
final else. Only the block of first true
condition is executed.

lst[-1]→50
lst[0]→10

⇒ last one
⇒ first one

x=None « undefined » constant value

Maths
Operators: + - * / // % **

× ÷
integer ÷ ÷ remainder

ab
from math import sin,pi…
sin(pi/4)→0.707…
cos(2*pi/3)→-0.4999…
sqrt(81)→9.0 √
log(e**2)→2.0
ceil(12.5)→13
floor(12.5)→12

escaped '

☝ floating numbers… approximated values angles in radians

(1+5.3)*2→12.6
abs(-3.2)→3.2
round(3.57,1)→3.6
pow(4,3)→64.0

for variables, functions,
modules, classes… names

Mémento v2.0.6

str (ordered sequences of chars / bytes)

(key/value associations)

☝ pitfall : and and or return value of a or
of b (under shortcut evaluation).
⇒ ensure that a and b are booleans.

(boolean results)

a=b=c=0 assignment to same value
multiple assignments

a,b=b,a values swap
a,*b=seq
*a,b=seq

unpacking of sequence in
item and list

bytes

bytes

b"toto\xfe\775"

hexadecimal octal

0b010 0xF30o642
binary octal hexa

""

empty

dict(a=3,b=4,k="v")

Items count

☝ keys=hashable values (base types, immutables…)

True
False True and False constants ☝ configure editor to insert 4 spaces in

place of an indentation tab.

lst[::-1]→[50,40,30,20,10]
lst[::-2]→[50,30,10]

1) evaluation of right side expression value
2) assignment in order with left side names

=
☝ assignment ⇔ binding of a name with a value

☝ immutables

On mutable sequences (list), remove with
del lst[3] and modify with assignment
lst[4]=25

del x remove name x

b""

@ → matrix × python3.5+numpy

☝ index from 0
(here from 0 to 4)

frozenset immutable set

Priority (…)

☝ usual order of operations
modules math, statistics, random,

 decimal, fractions, numpy, etc. (cf. doc)

Modules/Names Imports
from monmod import nom1,nom2 as fct
module truc⇔file truc.py

→direct access to names, renaming with as
import monmod →access via monmod.nom1 …

☝ modules and packages searched in python path (cf sys.path)

?
yes

no

shallow copy of sequence

?
yes no

and
*=
/=
%=
…

☝ with a var x:
if bool(x)==True: ⇔ if x:
if bool(x)==False:⇔ if not x:

raise ExcClass(…)
Signaling an error:

Errors processing:
try:
 normal procesising block
except Exception as e:
 error processing block

normal

processing

error
processing

error
processing

raiseraise X()

zero

☝ finally block for final processing
in all cases.

Exceptions on Errors

TYPE -1

"modele{} {} {}".format(x,y,r)

"{selection:formatting!conversion}"
◽ Selection :
 2
 nom
 0.nom
 4[key]
 0[2]

str

Displayprint("v=",3,"cm :",x,",",y+4)

print options:
◽ sep=" " items separator, default space
◽ end="\n" end of print, default new line
◽ file=sys.stdout print to file, default standard output

items to display : literal values, variables, expressions

loop on dict/set ⇔ loop on keys sequences
use slices to loop on a subset of a sequence

Conditional Loop Statementstatements block executed as long as
condition is true

while logical condition:
 statements block

s = 0
i = 1

while i <= 100:
 s = s + i**2
 i = i + 1
print("sum:",s)

initializations before the loop
condition with a least one variable value (here i)

s= ∑
i=1

i=100

i2☝ make condition variable change !

statements block executed for each
item of a container or iterator

for var in sequence:
 statements block

s = "Some text"
cnt = 0

for c in s:
 if c == "e":
 cnt = cnt + 1
print("found",cnt,"'e'")

Go over sequence's values

Algo: count
number of e
in the string.

Go over sequence's index
◽ modify item at index
◽ access items around index (before / after)
lst = [11,18,9,12,23,4,17]
lost = []
for idx in range(len(lst)):
 val = lst[idx]
 if val > 15:
 lost.append(val)
 lst[idx] = 15
print("modif:",lst,"-lost:",lost)

Algo: limit values greater
than 15, memorizing
of lost values.

☝
be

w
ar

e
of

 in
fin

ite
 lo

op
s!

initializations before the loop

loop variable, assignment managed by for statement

values to formatformating directives

Integer Sequences

Files

s = input("Instructions:")
☝ input always returns a string, convert it to required type

(cf. boxed Conversions on the other side).

range(5)→ 0 1 2 3 4 range(2,12,3)→ 2 5 8 11
range(3,8)→ 3 4 5 6 7 range(20,5,-5)→ 20 15 10
range(len(seq))→ sequence of index of values in seq
 ☝ range provides an immutable sequence of int constructed as needed

range([start,] end [,step])

f = open("file.txt","w",encoding="utf8")
storing data on disk, and reading it back

opening mode
◽ 'r' read
◽ 'w' write
◽ 'a' append
◽ …'+' 'x' 'b' 't'

encoding of
chars for text
files:
utf8 ascii
latin1 …

name of file
on disk
(+path…)

file variable
for operations

f.write("coucou")
f.writelines(list of lines)

writing reading
f.read([n]) → next chars

if n not specified, read up to end !
f.readlines([n]) → list of next lines
f.readline() → next line

with open(…) as f:
 for line in f :
 # processing ofline

cf. modules os, os.path and pathlib

f.close() ☝ dont forget to close the file after use !

Very common: opening with a guarded block
(automatic closing) and reading loop on lines
of a text file:

Function Definition

def fct(x,y,z):
 """documentation"""
 # statements block, res computation, etc.
 return res

function name (identifier)

result value of the call, if no computed
result to return: return None

☝ parameters and all
variables of this block exist only in the block and during the function
call (think of a “black box”)

named parameters

Function Callr = fct(3,i+2,2*i)

☝ read empty string if end of file

len(c)→ items count
min(c) max(c) sum(c)
sorted(c)→ list sorted copy
val in c → boolean, membership operator in (absence not in)
enumerate(c)→ iterator on (index, value)
zip(c1,c2…)→ iterator on tuples containing c

i
items at same index

all(c)→ True if all c items evaluated to true, else False
any(c)→ True if at least one item of c evaluated true, else False

☝ modify original list

lst.append(val) add item at end
lst.extend(seq) add sequence of items at end
lst.insert(idx,val) insert item at index
lst.remove(val) remove first item with value val
lst.pop([idx])→value remove & return item at index idx (default last)
lst.sort() lst.reverse() sort / reverse liste in place

"{:+2.3f}".format(45.72793)
→'+45.728'
"{1:>10s}".format(8,"toto")
→' toto'
"{x!r}".format(x="I'm")
→'"I\'m"'

☝ start default 0, end not included in sequence, step signed, default 1

◽ Conversion : s (readable text) or r (literal representation)

< > ^ = 0 at start for filling with 0
integer: b binary, c char, d decimal (default), o octal, x or X hexa…
float: e or E exponential, f or F fixed point, g or G appropriate (default),
string: s … % percent

◽ Formatting :
fill char alignment sign mini width.precision~maxwidth type

+ - space

Operations on Dictionaries Operations on Sets
Operators:
 | → union (vertical bar char)
 & → intersection
 - ^ → difference/symmetric diff.
 < <= > >= → inclusion relations
Operators also exist as methods.

d.update(d2) update/add
associations

Note: For dictionaries and sets, these
operations use keys.

Specific to ordered sequences containers (lists, tuples, strings, bytes…)
reversed(c)→ inversed iterator c*5→ duplicate c+c2→ concatenate
c.index(val)→ position c.count(val)→ events count

Operations on Lists

d[key]=value
d[key]→ value

d.keys()
d.values()
d.items()

d.clear()
del d[key]

→iterable views on
keys/values/associations

E
xa

m
pl

es

d.pop(key[,default])→ value
d.popitem()→ (key,value)
d.get(key[,default])→ value
d.setdefault(key[,default])→value

s.update(s2) s.copy()
s.add(key) s.remove(key)
s.discard(key) s.clear()
s.pop()

Loop Control

Go simultaneously over sequence's index and values:
for idx,val in enumerate(lst):

☝
go

od
 h

ab
it

: d
on

't
m

od
ify

 lo
op

 v
ar

ia
bl

e

Advanced: def fct(x,y,z,*args,a=3,b=5,**kwargs):
*args variable positional arguments (→tuple), default values,
**kwargs variable named arguments (→dict)

one argument per
parameter

storage/use of
returned value

Algo:

f.flush() write cache

f.tell()→position
reading/writing progress sequentially in the file, modifiable with:

f.seek(position[,origin])

f.truncate([size]) resize

Advanced:
*sequence
**dict

s.startswith(prefix[,start[,end]])
s.endswith(suffix[,start[,end]]) s.strip([chars])
s.count(sub[,start[,end]]) s.partition(sep)→ (before,sep,after)
s.index(sub[,start[,end]]) s.find(sub[,start[,end]])
s.is…() tests on chars categories (ex. s.isalpha())
s.upper() s.lower() s.title() s.swapcase()
s.casefold() s.capitalize() s.center([width,fill])
s.ljust([width,fill]) s.rjust([width,fill]) s.zfill([width])
s.encode(encoding) s.split([sep]) s.join(seq)

?
yes

no

next

finish
…

Input

import copy
copy.copy(c)→ shallow copy of container
copy.deepcopy(c)→ deep copy of container

☝ this is the use of function
name with parentheses
which does the call

fct()

fct

fct

☝ text mode t by default (read/write str), possible binary
mode b (read/write bytes). Convert from/to required type !

break immediate exit
continue next iteration

☝ else block for normal
loop exit.

Iterative Loop Statement

Operations on Strings

Formatting

Generic Operations on Containers

TYPE -1

Python Cheat Sheet
by Dave Child (DaveChild) via cheatography.com/1/cs/19/

Python sys Variables

argv Command line args

builti​n_m​odu​le_​‐
names

Linked C modules

byteorder Native byte order

check_​int​erval Signal check
frequency

exec_p​refix Root directory

executable Name of executable

exitfunc Exit function name

modules Loaded modules

path Search path

platform Current platform

stdin, stdout, stderr File objects for I/O

versio​n_info Python version info

winver Version number

Python sys.argv

sys.ar​gv[0] foo.py

sys.ar​gv[1] bar

sys.ar​gv[2] -c

sys.ar​gv[3] qux

sys.ar​gv[4] --h

sys.argv for the command:
$ python foo.py bar -c qux --h

Python os Variables

altsep Altern​ative sep

curdir Current dir string

defpath Default search path

devnull Path of null device

extsep Extension separator

linesep Line separator

name Name of OS

pardir Parent dir string

pathsep Patch separator

sep Path separator

Registered OS names: "​pos​ix", "​nt",
"​mac​", "​os2​", "​ce", "​jav​a", "​ris​cos​"

Python Class Special Methods

__new_​_(cls) __lt__​(self, other)

__init​__(​self, args) __le__​(self, other)

__del_​_(self) __gt__​(self, other)

__repr​__(​self) __ge__​(self, other)

__str_​_(self) __eq__​(self, other)

__cmp_​_(self, other) __ne__​(self, other)

__inde​x__​(self) __nonz​ero​__(​self)

__hash​__(​self)

__geta​ttr​__(​self, name)

__geta​ttr​ibu​te_​_(self, name)

__seta​ttr​__(​self, name, attr)

__dela​ttr​__(​self, name)

__call​__(​self, args, kwargs)

Python List Methods

append​(item) pop(po​sition)

count(​item) remove​(item)

extend​(list) reverse()

index(​item) sort()

insert​(po​sition, item)

Python String Methods

capita​lize() * lstrip()

center​(width) partit​ion​(sep)

count(sub, start,
end)

replac​e(old, new)

decode() rfind(sub, start ,end)

encode() rindex​(sub, start,
end)

endswi​th(sub) rjust(​width)

expand​tabs() rparti​tio​n(sep)

find(sub, start, end) rsplit​(sep)

index(sub, start,
end)

rstrip()

isalnum() * split(sep)

isalpha() * splitl​ines()

isdigit() * starts​wit​h(sub)

islower() * strip()

isspace() * swapcase() *

Python String Methods (cont)

istitle() * title() *

isupper() * transl​ate​(table)

join() upper() *

ljust(​width) zfill(​width)

lower() *

Methods marked * are locale dependant for
8-bit strings.

Python File Methods

close() readli​nes​(size)

flush() seek(o​ffset)

fileno() tell()

isatty() trunca​te(​size)

next() write(​string)

read(size) writel​ine​s(list)

readli​ne(​size)

Python Indexes and Slices

len(a) 6

a[0] 0

a[5] 5

a[-1] 5

a[-2] 4

a[1:] [1,2,3​,4,5]

a[:5] [0,1,2​,3,4]

a[:-2] [0,1,2,3]

a[1:3] [1,2]

a[1:-1] [1,2,3,4]

b=a[:] Shallow copy of a

Indexes and Slices of a=[0,1​,2,​3,4,5]

Python Datetime Methods

today() fromor​din​al(​ord​inal)

now(ti​mez​one​info) combin​e(date, time)

utcnow() strpti​me(​date, format)

fromti​mes​tam​p(t​ime​stamp)

utcfro​mti​mes​tam​p(t​ime​stamp)

By Dave Child (DaveChild)
cheatography.com/davechild/
aloneonahill.com

Published 19th October, 2011.
Last updated 3rd November, 2020.
Page 1 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

TYPE -2

Python Cheat Sheet
by Dave Child (DaveChild) via cheatography.com/1/cs/19/

Python Time Methods

replace() utcoff​set()

isofor​mat() dst()

__str__() tzname()

strfti​me(​format)

Python Date Formatting

%a Abbrev​iated weekday (Sun)

%A Weekday (Sunday)

%b Abbrev​iated month name (Jan)

%B Month name (January)

%c Date and time

%d Day (leading zeros) (01 to 31)

%H 24 hour (leading zeros) (00 to 23)

%I 12 hour (leading zeros) (01 to 12)

%j Day of year (001 to 366)

%m Month (01 to 12)

%M Minute (00 to 59)

%p AM or PM

%S Second (00 to 61⁴)

%U Week number¹ (00 to 53)

%w Weekday² (0 to 6)

%W Week number³ (00 to 53)

%x Date

%X Time

%y Year without century (00 to 99)

%Y Year (2008)

%Z Time zone (GMT)

%% A literal "​%" character (%)

¹ Sunday as start of week. All days in a new
year preceding the first Sunday are
considered to be in week 0.
² 0 is Sunday, 6 is Saturday.
³ Monday as start of week. All days in a new
year preceding the first Monday are
considered to be in week 0.
⁴ This is not a mistake. Range takes
account of leap and double​-leap seconds.

By Dave Child (DaveChild)
cheatography.com/davechild/
aloneonahill.com

Published 19th October, 2011.
Last updated 3rd November, 2020.
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

TYPE -2

Selecting List Elements

 Import libraries
>>> import numpy
>>> import numpy as np
 Selective import
>>> from math import pi

>>> help(str)

Python For Data Science Cheat Sheet
Python Basics

Learn More Python for Data Science Interactively at www.datacamp.com

Variable Assignment

Strings

>>> x=5
>>> x
 5

>>> x+2 Sum of two variables
 7
>>> x-2 Subtraction of two variables
 3
>>> x*2 Multiplication of two variables
 10
>>> x**2 Exponentiation of a variable
 25

>>> x%2 Remainder of a variable
 1

>>> x/float(2) Division of a variable
 2.5

Variables and Data Types

 str() '5', '3.45', 'True'

 int() 5, 3, 1

 float() 5.0, 1.0

 bool() True, True, True

Variables to strings

Variables to integers

Variables to floats

Variables to booleans

Lists
>>> a = 'is'
>>> b = 'nice'
>>> my_list = ['my', 'list', a, b]
>>> my_list2 = [[4,5,6,7], [3,4,5,6]]

 Subset
>>> my_list[1]
>>> my_list[-3]
 Slice
>>> my_list[1:3]
>>> my_list[1:]
>>> my_list[:3]
>>> my_list[:]
 Subset Lists of Lists
>>> my_list2[1][0]
>>> my_list2[1][:2]

Also see NumPy Arrays

>>> my_list.index(a)
>>> my_list.count(a)
>>> my_list.append('!')
>>> my_list.remove('!')
>>> del(my_list[0:1])
>>> my_list.reverse()
>>> my_list.extend('!')
>>> my_list.pop(-1)
>>> my_list.insert(0,'!')
>>> my_list.sort()

Get the index of an item
Count an item
Append an item at a time
Remove an item
Remove an item
Reverse the list
Append an item
Remove an item
Insert an item
Sort the list

Index starts at 0

Select item at index 1
Select 3rd last item

Select items at index 1 and 2
Select items after index 0
Select items before index 3
Copy my_list

my_list[list][itemOfList]

Libraries

>>> my_string.upper()
>>> my_string.lower()
>>> my_string.count('w')
>>> my_string.replace('e', 'i')
>>> my_string.strip()

>>> my_string = 'thisStringIsAwesome'
>>> my_string
'thisStringIsAwesome'

Numpy Arrays
>>> my_list = [1, 2, 3, 4]
>>> my_array = np.array(my_list)
>>> my_2darray = np.array([[1,2,3],[4,5,6]])

>>> my_array.shape
>>> np.append(other_array)
>>> np.insert(my_array, 1, 5)
>>> np.delete(my_array,[1])
>>> np.mean(my_array)
>>> np.median(my_array)
>>> my_array.corrcoef()
>>> np.std(my_array)

Asking For Help

>>> my_string[3]
>>> my_string[4:9]

 Subset
>>> my_array[1]
 2

 Slice
>>> my_array[0:2]
 array([1, 2])

 Subset 2D Numpy arrays
>>> my_2darray[:,0]
 array([1, 4])

>>> my_list + my_list
['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice']

>>> my_list * 2
['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice']

>>> my_list2 > 4
True

>>> my_array > 3
 array([False, False, False, True], dtype=bool)

>>> my_array * 2
 array([2, 4, 6, 8])
>>> my_array + np.array([5, 6, 7, 8])
 array([6, 8, 10, 12])

>>> my_string * 2
 'thisStringIsAwesomethisStringIsAwesome'

>>> my_string + 'Innit'
 'thisStringIsAwesomeInnit'

>>> 'm' in my_string
 True DataCamp

Learn Python for Data Science Interactively

Scientific computing

Data analysis

2D plotting

Machine learning

Also see Lists

Get the dimensions of the array
Append items to an array

Insert items in an array
Delete items in an array
Mean of the array
Median of the array

Correlation coefficient

Standard deviation

String to uppercase
String to lowercase
Count String elements

Replace String elements

Strip whitespaces

Select item at index 1

Select items at index 0 and 1

my_2darray[rows, columns]

Install Python

Calculations With Variables
Leading open data science platform

powered by Python
Free IDE that is included

with Anaconda
Create and share

documents with live code,
visualizations, text, ...

Types and Type Conversion

String Operations

List Operations

List Methods

Index starts at 0

String Methods
String Operations

Selecting Numpy Array Elements Index starts at 0

Numpy Array Operations

Numpy Array Functions

TYPE -3

Python
Cheat Sheet
Python 3 is a truly versatile programming language, loved

both by web developers, data scientists and software

engineers. And there are several good reasons for that!

Once you get a hang of it, your development speed and productivity will soar!

• Python is open-source and has a great support community,

• Plus, extensive support libraries.

• Its data structures are user-friendly.

TYPE -4

Python Basics: Getting Started

Main Python Data Types

How to Create a String in Python

Math Operators

How to Store Strings in Variables

Built-in Functions in Python

How to Define a Function

List

List Comprehensions

Tuples

Dictionaries

If Statements (Conditional Statements) in Python

Python Loops

Class

Dealing with Python Exceptions (Errors)

How to Troubleshoot the Errors

Conclusion

03

04

05

06

07

08

10

12

16

16

17

19

21

22

23

24

25

Table of Contents

Python Basics: Getting Started

What is IDLE (Integrated Development and Learning)

Most Windows and Mac computers come with Python pre-installed. You can check

that via a Command Line search. The particular appeal of Python is that you can

write a program in any text editor, save it in .py format and then run via a Command

Line. But as you learn to write more complex code or venture into data science, you

might want to switch to an IDE or IDLE.

IDLE (Integrated Development and Learning Environment) comes with every

Python installation. Its advantage over other text editors is that it highlights

important keywords (e.g. string functions), making it easier for you to interpret code.

Shell is the default mode of operation for Python IDLE. In essence, it’s a simple loop

that performs that following four steps:

• Reads the Python statement

• Evaluates the results of it

• Prints the result on the screen

• And then loops back to read the next statement.

Python shell is a great place to test various small code snippets.

Python Cheat Sheet 3

WebsiteSetup.org - Python Cheat Sheet

Main Python Data Types
Every value in Python is called an “object”. And every object has a specific data

type. The three most-used data types are as follows:

Integers (int) — an integer number to represent an object such as “number 3”.

Strings — codify a sequence of characters using a string. For example, the word

“hello”. In Python 3, strings are immutable. If you already defined one, you cannot

change it later on.

While you can modify a string with commands such as replace() or join(), they will

create a copy of a string and apply modification to it, rather than rewrite the original

one.

Plus, another three types worth mentioning are lists, dictionaries, and tuples. All of

them are discussed in the next sections.

For now, let’s focus on the strings.

Floating-point numbers (float) — use them to represent floating-point numbers.

Integers -2, -1, 0, 1, 2, 3, 4, 5

Strings ‘yo’, ‘hey’, ‘Hello!’, ‘what’s up!’

Floating-point numbers -1.25, -1.0, --0.5, 0.0, 0.5, 1.0, 1.25

Python Cheat Sheet 4

WebsiteSetup.org - Python Cheat Sheet

How to Create a String in Python

Basic Python String

String Concatenation

You can create a string in three ways using single, double or triple quotes. Here’s an

example of every option:

IMP! Whichever option you choose, you should stick to it and use it consistently

within your program.

As the next step, you can use the print() function to output your string in the console

window. This lets you review your code and ensure that all functions well.

Here’s a snippet for that:

my_string = “Let’s Learn Python!”

another_string = ‘It may seem difficult first, but you

can do it!’

a_long_string = ‘’’Yes, you can even master multi-line

strings

 that cover more than one line

 with some practice’’’

The next thing you can master is concatenation — a way to add two strings

together using the “+” operator. Here’s how it’s done:

Note: You can’t apply + operator to two different data types e.g. string + integer. If

you try to do that, you’ll get the following Python error:

string_one = “I’m reading “

string_two = “a new great book!”

string_three = string_one + string_two

TypeError: Can’t convert ‘int’ object to str implicitly

print(“Let’s print out a string!”)

Python Cheat Sheet 5

WebsiteSetup.org - Python Cheat Sheet

String Replication

Math Operators

As the name implies, this command lets you repeat the same string several times.

This is done using * operator. Mind that this operator acts as a replicator only with

string data types. When applied to numbers, it acts as a multiplier.

String replication example:

For reference, here’s a list of other math operations you can apply towards numbers:

And with print ()

And your output will be Alice written five times in a row.

‘Alice’ * 5 ‘AliceAliceAliceAliceAlice’

print(“Alice” * 5)

Operators Operation Example

** Exponent 2 ** 3 = 8

% Modulus/Remainder 22 % 8 = 6

// Integer division 22 // 8 = 2

/ Division 22 / 8 = 2.75

* Multiplication 3 * 3 = 9

- Subtraction 5 - 2 = 3

+ Addition 2 + 2 = 4

Python Cheat Sheet 6

WebsiteSetup.org - Python Cheat Sheet

How to Store Strings in Variables
Variables in Python 3 are special symbols that assign a specific storage location to

a value that’s tied to it. In essence, variables are like special labels that you place on

some value to know where it’s stored.

Strings incorporate data. So you can “pack” them inside a variable. Doing so makes

it easier to work with complex Python programs.

Here’s how you can store a string inside a variable.

Let’s break it down a bit further:

• my_str is the variable name.

• = is the assignment operator.

• “Just a random string” is a value you tie to the variable name.

Now when you print this out, you receive the string output.

See? By using variables, you save yourself heaps of effort as you don’t need to

retype the complete string every time you want to use it.

my_str = “Hello World”

print(my_str)

= Hello World

Python Cheat Sheet 7

WebsiteSetup.org - Python Cheat Sheet

Built-in Functions in Python

Input() Function

len() Function

You already know the most popular function in Python — print(). Now let’s take a

look at its equally popular cousins that are in-built in the platform.

When you run this short program, the results will look like this:

Output:

input() function is a simple way to prompt the user for some input (e.g. provide their

name). All user input is stored as a string.

Here’s a quick snippet to illustrate this:

len() function helps you find the length of any string, list, tuple, dictionary, or another

data type. It’s a handy command to determine excessive values and trim them to

optimize the performance of your program.

Here’s an input function example for a string:

Hi! What’s your name? “Jim”

Nice to meet you, Jim!

How old are you? 25

So, you are already 25 years old, Jim!

The length of the string is: 35

name = input(“Hi! What’s your name? “)

print(“Nice to meet you “ + name + “!”)

age = input(“How old are you “)

print(“So, you are already “ + str(age) + “ years old, “

+ name + “!”)

testing len()

str1 = “Hope you are enjoying our tutorial!”

print(“The length of the string is :”, len(str1))

Python Cheat Sheet 8

WebsiteSetup.org - Python Cheat Sheet

filter()

Use the Filter() function to exclude items in an iterable object (lists, tuples,

dictionaries, etc)

(Optional: The PDF version of the checklist can also include a full table of all the in-built

functions).

ages = [5, 12, 17, 18, 24, 32]

def myFunc(x):

 if x < 18:

 return False

 else:

 return True

adults = filter(myFunc, ages)

for x in adults:

 print(x)

Python Cheat Sheet 9

WebsiteSetup.org - Python Cheat Sheet

How to Define a Function
Apart from using in-built functions, Python 3 also allows you to define your own

functions for your program.

To recap, a function is a block of coded instructions that perform a certain action.

Once properly defined, a function can be reused throughout your program i.e. re-use

the same code.

Here’s a quick walkthrough explaining how to define a function in Python:

First, use def keyword followed by the function name():. The parentheses can

contain any parameters that your function should take (or stay empty).

Next, you’ll need to add a second code line with a 4-space indent to specify what

this function should do.

Now, let’s take a look at a defined function with a parameter — an entity, specifying

an argument that a function can accept.

Now, you have to call this function to run the code.

def name():

def name():

 print(“What’s your name?”)

def add_numbers(x, y, z):

 a = x + y

 b = x + z

 c = y + z

 print(a, b, c)

add_numbers(1, 2, 3)

name.py

def name():

 print(“What’s your name?”)

hello()

Python Cheat Sheet 10

WebsiteSetup.org - Python Cheat Sheet

name()

How to Pass Keyword Arguments to a Function

In this case, you pass the number 1 in for the x parameter, 2 in for the y parameter,

and 3 in for the z parameter. The program will that do the simple math of adding up

the numbers:

Output:

A function can also accept keyword arguments. In this case, you can use

parameters in random order as the Python interpreter will use the provided

keywords to match the values to the parameters.

Here’s a simple example of how you pass a keyword argument to a function.

Output:

Define function with parameters

def product_info(product name, price):

 print(“productname: “ + product name)

 print(“Price “ + str(dollars))

Call function with parameters assigned as above

product_info(“White T-shirt”, 15 dollars)

Call function with keyword arguments

product_info(productname=”jeans”, price=45)

Productname: White T-shirt

Price: 15

Productname: Jeans

Price: 45

a = 1 + 2

b = 1 + 3

c = 2 + 3

Python Cheat Sheet 11

WebsiteSetup.org - Python Cheat Sheet

3

Product Name: White T-Shirt

Price: 15

Product Name: Jeans

Price: 45

4

def product_info (product name, price):
print(”Product Name: “ + product_name)
print(”Price: “ + str(price))

5

Define function with parameters

product_info(”White T-Shirt: “, 15)
Call function with parameters assigned as above

product_info(productname=”Jeans“, price=45)
Call function with keyword arguments

Lists

Example lists

How to Add Items to a List

Lists are another cornerstone data type in Python used to specify an ordered

sequence of elements. In short, they help you keep related data together and

perform the same operations on several values at once. Unlike strings, lists are

mutable (=changeable).

Each value inside a list is called an item and these are placed between square

brackets.

Alternatively, you can use list() function to do the same:

You have two ways to add new items to existing lists.

The first one is using append() function:

The second option is to insert() function to add an item at the specified index:

my_list = [1, 2, 3]

my_list2 = [“a”, “b”, “c”]

my_list3 = [“4”, d, “book”, 5]

beta_list = [“apple”, “banana”, “orange”]

beta_list.append(“grape”)

print(beta_list)

beta_list = [“apple”, “banana”, “orange”]

beta_list.insert(“2 grape”)

print(beta_list)

alpha_list = list((“1”, “2”, “3”))

print(alpha_list)

Python Cheat Sheet 12

WebsiteSetup.org - Python Cheat Sheet

2,“grape”

How to Remove an Item from a List

Combine Two Lists

Create a Nested List

Again, you have several ways to do so. First, you can use remove() function:

Secondly, you can use the pop() function. If no index is specified, it will remove the

last item.

The last option is to use del keyword to remove a specific item:

P.S. You can also apply del towards the entire list to scrap it.

To mash up two lists use the + operator.

You can also create a list of your lists when you have plenty of them :)

beta_list = [“apple”, “banana”, “orange”]

beta_list.remove(“apple”)

print(beta_list)

beta_list = [“apple”, “banana”, “orange”]

beta_list.pop()

print(beta_list)

beta_list = [“apple”, “banana”, “orange”]

del beta_list [1]

print(beta_list)

my_list = [1, 2, 3]

my_list2 = [“a”, “b”, “c”]

combo_list = my_list + my_list2

combo_list

[1, 2, 3, ‘a’, ‘b’, ‘c’]

my_nested_list = [my_list, my_list2]

my_nested_list

[[1, 2, 3], [‘a’, ‘b’, ‘c’]]

Python Cheat Sheet 13

WebsiteSetup.org - Python Cheat Sheet

Sort a List

Slice a List

Change Item Value on Your List

Loop Through the List

Use the sort() function to organize all items in your list.

Now, if you want to call just a few elements from your list (e.g. the first 4 items),

you need to specify a range of index numbers separated by a colon [x:y]. Here’s an

example:

You can easily overwrite a value of one list items:

Using for loop you can multiply the usage of certain items, similarly to what *

operator does. Here’s an example:

Output:

alpha_list = [34, 23, 67, 100, 88, 2]

alpha_list.sort()

alpha_list

[2, 23, 34, 67, 88, 100]

alpha_list[0:4]

[2, 23, 34, 67]

beta_list = [“apple”, “banana”, “orange”]

beta_list[1] = “pear”

print(beta_list)

for x in range(1,4):

 beta_list += [‘fruit’]

 print(beta_list)

[‘apple’, ‘pear’, ‘cherry’]

Python Cheat Sheet 14

WebsiteSetup.org - Python Cheat Sheet

Copy a List

Use the built-in copy() function to replicate your data:

Alternatively, you can copy a list with the list() method:

beta_list = [“apple”, “banana”, “orange”]

beta_list = beta_list.copy()

print(beta_list)

beta_list = [“apple”, “banana”, “orange”]

beta_list = list (beta_list)

print(beta_list)

Python Cheat Sheet 15

WebsiteSetup.org - Python Cheat Sheet

List Comprehensions

Tuples

List comprehensions are a handy option for creating lists based on existing lists.

When using them you can build by using strings and tuples as well.

Tuples are similar to lists — they allow you to display an ordered sequence of

elements. However, they are immutable and you can’t change the values stored in a

tuple.

The advantage of using tuples over lists is that the former are slightly faster. So it’s

a nice way to optimize your code.

Output:

(1, 3, 5, 7, 9)

The process is similar to slicing lists.

Note: Once you create a tuple, you can’t add new items to it or change it in any other way!

List comprehensions examples

How to Create a Tuple

How to Slide a Tuple

Here’s a more complex example that features math operators, integers, and the

range() function:

list_variable = [x for x in iterable]

my_tuple = (1, 2, 3, 4, 5)

my_tuple[0:3]

(1, 2, 3)

numbers = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

print(numbers[1:11:2])

number_list = [x ** 2 for x in range(10) if x % 2 == 0]

print(number_list)

Python Cheat Sheet 16

WebsiteSetup.org - Python Cheat Sheet

Convert Tuple to a List

Dictionaries

How to Create a Python Dictionary

Since Tuples are immutable, you can’t change them. What you can do though is

convert a tuple into a list, make an edit and then convert it back to a tuple.

Here’s how to accomplish this:

A dictionary holds indexes with keys that are mapped to certain values. These

key-value pairs offer a great way of organizing and storing data in Python. They are

mutable, meaning you can change the stored information.

A key value can be either a string, Boolean, or integer. Here’s an example dictionary

illustrating this:

Here’s a quick example showcasing how to make an empty dictionary.

Option 1: new_dict = {}

Option 2: other_dict= dict()

And you can use the same two approaches to add values to your dictionary:

x = (“apple”, “orange”, “pear”)

y = list(x)

y[1] = “grape”

x = tuple(y)

print(x)

Customer 1= {‘username’: ‘john-sea’, ‘online’: false,

‘friends’:100}

new_dict = {

 “brand”: “Honda”,

 “model”: “Civic”,

 “year”: 1995

}

print(new_dict)

Python Cheat Sheet 17

WebsiteSetup.org - Python Cheat Sheet

You can access any of the values in your dictionary the following way:

You can also use the following methods to accomplish the same.

• dict.keys() isolates keys

• dict.values() isolates values

• dict.items() returns items in a list format of (key, value) tuple pairs

To change one of the items, you need to refer to it by its key name:

Again to implement looping, use for loop command.

Note: In this case, the return values are the keys of the dictionary. But, you can also return

values using another method.

How to Access a Value in a Dictionary

Change Item Value

Loop Through the Dictionary

x = new_dict[“brand”]

#Change the “year” to 2020:

new_dict= {

 “brand”: “Honda”,

 “model”: “Civic”,

 “year”: 1995

}

new_dict[“year”] = 2020

#print all key names in the dictionary

for x in new_dict:

 print(x)

#print all values in the dictionary

for x in new_dict:

 print(new_dict[x])

#loop through both keys and values

for x, y in my_dict.items():

 print(x, y)

Python Cheat Sheet 18

WebsiteSetup.org - Python Cheat Sheet

The goal of a conditional statement is to check if it’s True or False.

For more complex operations, you can create nested if statements. Here’s how it

looks:

Just like other programming languages, Python supports the basic logical

conditions from math:

• Equals: a == b

• Not Equals: a != b

• Less than: a < b

• Less than or equal to a <= b

• Greater than: a > b

• Greater than or equal to: a >= b

You can leverage these conditions in various ways. But most likely, you’ll use them in

“if statements” and loops.

Output:

That’s True!

If Statement Example

Nested If Statements

If Statements (Conditional

Statements) in Python

if 5 > 1:

 print(“That’s True!”)

x = 35

if x > 20:

 print(“Above twenty,”)

 if x > 30:

 print(“and also above 30!”)

Python Cheat Sheet 19

WebsiteSetup.org - Python Cheat Sheet

elif keyword prompts your program to try another condition if the previous one(s)

was not true. Here’s an example:

else keyword helps you add some additional filters to your condition clause. Here’s

how an if-elif-else combo looks:

If statements can’t be empty. But if that’s your case, add the pass statement to avoid

having an error:

Not keyword let’s you check for the opposite meaning to verify whether the value is

NOT True:

Elif Statements

If Else Statements

Pass Statements

If-Not-Statements

a = 45

b = 45

if b > a:

 print(“b is greater than a”)

elif a == b:

 print(“a and b are equal”)

if age < 4:

ticket_price = 0

elif age < 18:

ticket_price = 10

else: ticket_price = 15

a = 33

b = 200

if b > a:

 pass

new_list = [1, 2, 3, 4]

x = 10

if x not in new_list:

 print(“’x’ isn’t on the list, so this is True!”)

Python Cheat Sheet 20

WebsiteSetup.org - Python Cheat Sheet

Python has two simple loop commands that are good to know:

• for loops

• while loops

Let’s take a look at each of these.

As already illustrated in the other sections of this Python checklist, for loop is a

handy way for iterating over a sequence such as a list, tuple, dictionary, string, etc.

Here’s an example showing how to loop through a string:

While loop enables you to execute a set of statements as long as the condition for

them is true.

You can also stop the loop from running even if the condition is met. For that, use

the break statement both in while and for loops:

Plus, you’ve already seen other examples for lists and dictionaries.

Python Loops

For Loop

While Loops

How to Break a Loop

for x in “apple”:

 print(x)

#print as long as x is less than 8

i = 1

while i< 8:

 print(x)

 i += 1

i = 1

while i < 8:

 print(i)

 if i == 4:

 break

 i += 1

Python Cheat Sheet 21

WebsiteSetup.org - Python Cheat Sheet

Since Python is an object-oriented programming language almost every element of

it is an object — with its methods and properties.

Class acts as a blueprint for creating different objects. Objects are an instance of a

class, where the class is manifested in some program.

Let’s create a class named TestClass, with one property named z:

As a next step, you can create an object using your class. Here’s how it’s done:

Further, you can assign different attributes and methods to your object. The

example is below:

Class

How to Create a Class

How To Create an Object

class TestClass:

 z = 5

class car(object):

 “””docstring”””

 def __init__(self, color, doors, tires):

 “””Constructor”””

 self.color = color

 self.doors = doors

 self.tires = tires

 def brake(self):

 “””

 Stop the car

 “””

 return “Braking”

 def drive(self):

 “””

 Drive the car

 “””

 return “I’m driving!”

p1 = TestClass()

print(p1.x)

Python Cheat Sheet 22

WebsiteSetup.org - Python Cheat Sheet

Python has a list of in-built exceptions (errors) that will pop up whenever you make

a mistake in your code. As a newbie, it’s good to know how to fix these.

Every object can be further sub-classified. Here’s an example

• AttributeError — pops up when an attribute reference or assignment fails.

• IOError — emerges when some I/O operation (e.g. an open() function) fails

for an I/O-related reason, e.g., “file not found” or “disk full”.

• ImportError — comes up when an import statement cannot locate the

module definition. Also, when a from… import can’t find a name that must be

imported.

• IndexError — emerges when a sequence subscript is out of range.

• KeyError — raised when a dictionary key isn’t found in the set of existing keys.

• KeyboardInterrupt — lights up when the user hits the interrupt key (such

as Control-C or Delete).

• NameError — shows up when a local or global name can’t be found.

Dealing with Python Exceptions (Errors)

How to Create a Subclass

The Most Common Python Exceptions

class Car(Vehicle):

 “””

 The Car class

 “””

 def brake(self):

 “””

 Override brake method

 “””

 return “The car class is breaking slowly!”

if __name__ == “__main__”:

 car = Car(“yellow”, 2, 4, “car”)

 car.brake()

 ‘The car class is breaking slowly!’

 car.drive()

 “I’m driving a yellow car!”

Python Cheat Sheet 23

WebsiteSetup.org - Python Cheat Sheet

• OSError — indicated a system-related error.

• SyntaxError — pops up when a parser encounters a syntax error.

• TypeError — comes up when an operation or function is applied to an object

of inappropriate type.

• ValueError — raised when a built-in operation/function gets an argument

that has the right type but not an appropriate value, and the situation is not

described by a more precise exception such as IndexError.

• ZeroDivisionError — emerges when the second argument of a division or

modulo operation is zero.

Python has a useful statement, design just for the purpose of handling exceptions —

try/except statement. Here’s a code snippet showing how you can catch KeyErrors

in a dictionary using this statement:

You can also detect several exceptions at once with a single statement. Here’s an

example for that:

How to Troubleshoot the Errors

my_dict = {“a”:1, “b”:2, “c”:3}

try:

 value = my_dict[“d”]

 except KeyError:

 print(“That key does not exist!”)

my_dict = {“a”:1, “b”:2, “c”:3}

try:

 value = my_dict[“d”]

except IndexError:

 print(“This index does not exist!”)

except KeyError:

 print(“This key is not in the dictionary!”)

except:

 print(“Some other problem happened!”)

Python Cheat Sheet 24

WebsiteSetup.org - Python Cheat Sheet

my_dict = {“a”:1, “b”:2, “c”:3}

try:

 value = my_dict[“a”]

except KeyError:

 print(“A KeyError occurred!”)

else:

 print(“No error occurred!”)

Adding an else clause will help you confirm that no errors

were found:

try/except with else clause

Conclusions
Now you know the core Python concepts!

By no means is this Python checklist comprehensive. But it includes all the key data

types, functions and commands you should learn as a beginner.

As always, we welcome your feedback in the comment section below!

Python Cheat Sheet 25

WebsiteSetup.org - Python Cheat Sheet

	Python Cheat Sheet - Page 1
	Python sys Variables
	Python Class Special Methods
	Python File Methods
	Python List Methods
	Python sys.argv
	Python Indexes and Slices
	Python String Methods
	Python os Variables
	Python Datetime Methods

	Python Cheat Sheet - Page 2
	Python Time Methods
	Python Date Formatting

	Python Cheat Sheet - Page 1
	Python sys Variables
	Python Class Special Methods
	Python File Methods
	Python List Methods
	Python sys.argv
	Python Indexes and Slices
	Python String Methods
	Python os Variables
	Python Datetime Methods

	Python Cheat Sheet - Page 2
	Python Time Methods
	Python Date Formatting

